"System Decoupling By Design; Application to Tensegrity Structures"

Cornel Sultan, Department of Aerospace and Ocean Engineering, Virginia Tech

Coordinate coupling raises serious numerical, analysis, and control design problems that grow with the size of the system. On the other hand, decoupled dynamic equations facilitate all of the above processes since each equation can be treated independently. Unfortunately, due to the inherent heterogeneity typical of most practical, complex systems, these are not naturally decoupled so developing accurate enough decoupled approximations is of interest.

In this talk the issue of building such accurate decoupled approximations is addressed by leveraging concepts from robust control theory. Specifically, system gains (e.g. energy gain, peak to peak gain) are used to characterize the approximation error. Then some system parameters are selected to minimize this approximation error. The advantage of using system gains is that the decoupling approximation is guaranteed to be accurate over an entire class of signals (e.g. finite energy/finite peak signals). These ideas are illustrated on tensegrity structures which are designed to yield accurate decoupled linear models with respect to all signals of finite energy and finite peak. Further analysis corrects several misconceptions regarding decoupling, system properties, and control design.

Cornel Sultan holds a Ph.D. in Aerospace Engineering from Purdue University, a M.S. in Mathematics, and a B.S./M.S. in Aerospace Engineering from Bucharest Polytechnic University (Romania). He has been affiliated, among others, with Harvard Medical School, where he worked on mathematical modeling of cells, and United Technologies Research Center, where he led projects on helicopter modeling and control. Currently he is an Associate Prof. in the Aerospace and Ocean Engineering Department at Virginia Tech where his principal research activities are in the modeling, control and design of tensegrity structures, membranes, helicopters, and energy harvesting systems. He received a NSF CAREER Award in 2010.

Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License